STERICALLY CROWDED HETEROCYCLES. I. MOLECULAR STRUCTURE OF 3-CHAIN SUBSTITUTED 2-PHENYLIMIDAZO[1,2-*a*]PYRIDINIUM SALTS

Stanislav BOHM^{*a*}, Richard KUBIK^{*a*}, Martin HRADILEK^{*b*}, Jan NEMECEK^{*c*}, Michal HUSAK^{*d*}, Svetlana PAKHOMOVA^{*d*}, Jan ONDRACEK^{*d*}, Bohumil KRATOCHVIL^{*d*,*} and Josef KUTHAN^{*a*,*}

^a Department of Organic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6, The Czech Republic ^b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, The Czech Republic ^c Institute of Microbiology,

Academy of Sciences of the Czech Republic, 142 20 Prague 4, The Czech Republic ^d Department of Solid State Chemistry,

Prague Institute of Chemical Technology, 166 28 Prague 6, The Czech Republic

Received September 1, 1994 Accepted November 12, 1994

Dedicated to Professor Milan Kratochvil on the occasion of his 70th birthday.

2-Phenyl-3-[(*Z*)-1,3-diphenyl-3-oxopropenyl]imidazo[1,2-*a*]pyridine (*I*) was converted to corresponding 1-alkyl-2-phenyl-3-[(*Z*)-1,3-diphenyl-3-oxopropenyl]imidazo[1,2-*a*]pyridinium salts *III* – *VI* and 2-phenyl-3-[(*Z*)-1,3-diphenyl-3-oxopropenyl]imidazo[1,2-*a*]pyridinium perchlorate (*VII*). The protonation site is discussed in terms of calculated molecular energies of alternative cations. The X-ray structure analyses of enone *I* and its quaternary periodide *III* are reported and compared with the PM3 molecular optimizations. ¹H NMR and ¹³C NMR spectra reveal well changes of molecular structures caused by the transformation of the base *I* into salts *III* – *VII*.

In connection with our interest in sterically crowded heterocyclic molecules the ferricyanide oxidation of 1-(2-heteroaryl)-2,4,6-triarylpyridinium salts^{1,2} affording 2-phenyl-3-[(Z)-1,3-diphenyl-3-oxopropenyl]imidazo[1,2-*a*]pyridine (*I*) or analogous imidazo [1,2-*a*]pyrimidine derivative *II* offers a general approach to this type of compounds (Scheme 1). In addition, a practical aspect of the research may be associated with a broad pharmacological activity of variously substituted imidazo[1,2-*a*]-pyridines³⁻⁶ and especially their quaternary salts being potent curariform agents⁷⁻⁹.

^{*} The author to whom correspondence should be addressed.

The quaternization of unsaturated ketone *I* has been suggested to proceed at the N1 position² in agreement with the general behaviour of the imidazo[1,2-*a*]pyridine ring system¹⁰. The same regioselectivity was established for the protonation¹¹.

Scheme 1

In this paper the analogous transformations of enone *I* to salts *III* – *VII* are reported. In addition, crystal and molecular structures of compounds *I* and *III* have been investigated using the X-ray diffraction analysis and semiempirical quantum chemical calculations. The results are discussed in connection with complete assignments of high resolution ¹H NMR and ¹³C NMR spectra of the studied compounds. The hitherto performed MO studies on various imidazo[1,2-*a*]pyridines¹² are also enriched by the PM3 calculations of enone *I* and some related cations.

EXPERIMENTAL

The temperature data are uncorrected. Melting points were determined on a Boetius block, the NMR spectra (δ , ppm; *J*, Hz) were taken on a VARIAN VXR-400 instrument, (CD₃)₂SO was used as a solvent unless stated otherwise. The working frequency was 400 MHz for ¹H and 100 MHz for ¹³C. The preparation of compounds *I* and *II* was reported earlier^{1,2}.

2678

1-Methyl-2-phenyl-3-[(Z)-1,3-diphenyl-3-oxopropenyl]imidazo[1,2-a]pyridinium Periodide (III)

A solution of iodine (0.1 g, 0.4 mmol) in methanol (10 ml) was added to iodide IV (0.16 g, 0.3 mmol) in methanol (10 ml). The precipitated product was let to free crystallization from methanol affording 0.18 g (57%) red crystals of III (Table I).

1-Alkyl-2-phenyl-3-[(Z)-1,3-diphenyl-3-oxopropenyl]imidazo[1,2-a]pyridinium Halides IV - VI

Enone I (1 g, 2.5 mmol) and corresponding alkyl halogenide (40 – 160 mmol) in nitromethane (5 ml) were refluxed in dark for 2 – 4 h. After evaporation in vacuo the residue was crystallized from appropriate solvent. Yields and physicochemical data of products IV - VI are given in Table I.

2-Phenyl-3-[(Z)-1,3-diphenyl-3-oxopropenyl]imidazo[1,2-a]pyridinium Perchlorate (VII)

A solution of enone I (0.2 g) in ethanol (10 ml) was treated with 70% perchloric acid (1 ml). The precipitated crude product was crystallized from ethanol giving 0.2 g (80%) yellow crystals of *VII*.

X-Ray Analyses of Compounds I and III

Enone I: Monoclinic space group $P2_1/n$, a = 11.914(1), b = 13.024(3), c = 13.968(2) Å, $\beta = 100.25(1)^\circ$, V = 2 132.7(7) Å³, Z = 4, $D_{calc} = 1.25$ g cm⁻³, $\mu(MoK\alpha) = 0.07$ mm⁻¹, F(000) = 840. The structure was solved by direct methods and anisotropically refined by full-matrix least-squares. The hydrogen atoms were fixed in calculated positions.

Compound Yield, %	M.p., °C Solvent	Formula (M.w.) —	Calculated/Found				
			% C	% H	% N	% X	
III	178 – 179	– 179 C ₂₉ H ₂₃ I ₃ N ₂ O		2.91	3.52	47.82	
57	MeOH	(796.3)	43.76	2.89	3.45	48.03	
IV^a	188 – 189	C29H23IN2O	64.22	4.27	5.17	23.40	
59	MeOH	(542.4)	64.45	4.30	4.90	23.40	
V^{a}	112 – 115	C30H25IN2O	64.76	4.53	5.03	22.81	
72	Et_2O^b	(556.4)	64.55	4.72	4.96	22.90	
VI^c	119 – 121	C35H28BrN2O	73.43	4.93	4.89	13.96	
70	Et_2O^b	(572.5)	73.03	4.84	4.46	14.08	
VII	225 - 226	C28H21ClN2O5	67.14	4.23	5.59	7.08	
80	EtOH	(500.9)	67.04	4.36	5.59	7.13	

TABLE I Physico-chemical characteristics of salts *III – VII*

^a Reaction time 4 h; ^b only washed with ether-cyclohexane mixture; ^c reaction time 2 h.

Periodide III: Monoclinic space group $P2_1/n$, a = 15.441(1), b = 11.376(1), c = 17.099(2) Å, $\beta = 105.71(1)^\circ$, V = 2 891.4(5) Å³, Z = 4, $D_{calc} = 2.12$ g cm⁻³, μ (MoK α) = 4.29 mm⁻¹, F(000) = 1 724. The structure was also solved by direct methods and anisotropically refined but by block-diagonal least-squares in five blocks. In this case, hydrogen atoms were localized from $\Delta \rho$ map and expected geometry. All H-atoms were isotropically refined. A semiempirical correction for absorption¹³ was applied.

Data collection and structure refinement parameters for compounds I and III are listed in Table II, atomic parameters in Table III. Figures 1 and 2 show drawings of molecule I and ionic structure III. Figures 3 and 4 depict corresponding molecular packings indicating the racemic character of the compounds.

TABLE II

Data collection and stucture refinement parameters

Parameter	Ι	III
Crystal dimensions, mm	$0.80\times0.60\times0.50$	$0.45 \times 0.40 \times 0.25$
Diffractometer and radiation used	Enraf-Noniu	s CAD4
	λ (MoK _{α}) = 0	0.71073 Å
Scan technique	$\omega/2\theta$	
Temperature	293 K	
No. and θ range of reflection for lattice parameter refinement	20; 15 – 16°	23; 19 – 21°
Range of h , k and l	$-14 \rightarrow 14, 0 \rightarrow 15, -16 \rightarrow 16$	$-16 \rightarrow 16, -11 \rightarrow 11, 0 \rightarrow 18$
Standard reflection monitored in interval; intensity fluctuation	120 min; -0.5%	120 min; -2%
Total number of reflections measured; 20 range	5 975; 0 – 50°	7 502; $0 - 50^{\circ}$
No. of observed reflections	2 181	2 682
Value of <i>R</i> _{int}	0.042	0.023
Criterion for observed reflections	$I \ge 1.96 \sigma(I)$	$I \ge 1.96 \sigma(I)$
Function minimized	$\sum w (F_0 -$	$F_{\rm c} \mid)^2$
Weighting scheme	$w = \left[\sigma^2(F_0)\right]^{-1}$	w = 1
Parameters refined	280	411
Value of <i>R</i> , <i>wR</i> and <i>S</i>	0.081, 0.062, 1.250	0.025, 0.025, 1.802
Ratio of max. least squares shift to e.s.d. (Δ/σ) in the last cycle	0.002	0.002
Max. and min. heights in final $\Delta\rho$ map	0.24, -0.29 e Å ⁻³	0.66, -0.54 e Å ⁻³
Source of atomic factors	ref. ¹⁹	
Programs used	CRYSTALS (ref. ²⁰), SDP (ref. ²¹), SHELXS86 PARST91 (ref. ²³), SHELX76 (ref. ²⁴)	
Computers used	PDP 11/73, I	PC AT 486

TABLE III

Final coordinates (. 10⁴) and their equivalent isotropic thermal parameters (. 10³) for non-hydrogen atoms. The isotropic equivalent parameter is defined as $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_i a_j \mathbf{a}_i^* \mathbf{a}_j^*$

Atom	x	у	z	$U_{\rm eq}$, Å ²			
Molecule I							
01	4737(4)	2659(4)	2483(3)	87(2)			
N1	1716(4)	-232(3)	1404(3)	57(2)			
N4	884(3)	805(3)	2347(3)	50(2)			
C2	2531(4)	223(4)	2086(3)	47(3)			
C3	2050(4)	880(4)	2670(3)	47(3)			
C5	-6(5)	1322(5)	2623(4)	68(3)			
C6	-1071(5)	1134(5)	2163(5)	80(4)			
C7	-1277(5)	417(6)	1396(5)	75(4)			
C8	-389(5)	-76(5)	1110(4)	68(3)			
C9	726(5)	123(4)	1578(4)	53(2)			
C10	2522(4)	1582(4)	3461(4)	50(2)			
C11	3279(5)	2302(4)	3333(4)	56(2)			
C12	3715(5)	2518(4)	2419(4)	62(3)			
C13	2147(4)	1429(4)	4400(4)	53(2)			
C14	2061(5)	2244(5)	5028(4)	69(3)			
C15	1629(5)	2104(5)	5876(4)	74(3)			
C16	1286(5)	1154(6)	6114(4)	73(4)			
C17	1395(5)	336(5)	5529(4)	71(3)			
C18	1806(4)	471(4)	4675(4)	57(3)			
C19	2938(5)	2587(4)	1459(4)	57(2)			
C20	3385(6)	2431(4)	624(4)	71(3)			
C21	2689(7)	2509(5)	-270(5)	84(4)			
C22	1561(7)	2752(5)	-355(5)	84(4)			
C23	1113(6)	2917(5)	472(5)	82(4)			
C24	1791(6)	2824(4)	1371(5)	66(4)			
C25	3750(5)	-19(4)	2124(4)	53(2)			
C26	4125(5)	-313(5)	1288(4)	74(3)			
C27	5244(6)	-577(6)	1310(5)	92(4)			
C28	5998(6)	-561(6)	2161(6)	92(4)			
C29	5652(5)	-268(5)	3001(5)	82(4)			
C30	4529(5)	8(4)	2985(4)	68(3)			
		Periodide III					
I1	5294(0)	2199(0)	9253(0)	87(1)			
I2	8489(0)	1433(0)	174(0)	87(1)			
13	5000	0	10000	60(1)			

2682

TABLE III

(Continued)

Atom	x	у	z	$U_{ m eq}$, Å ²
I4	10000	0	0	76(1)
N1	3621(3)	1685(4)	1229(2)	56(2)
N4	3858(3)	3377(4)	719(2)	54(2)
01	3238(2)	5225(3)	1456(2)	75(2)
C2	4292(3)	2257(5)	1810(3)	50(2)
C3	4427(3)	3322(5)	1513(3)	51(2)
C5	3741(4)	4259(6)	152(4)	67(3)
C6	3126(5)	4098(7)	-575(4)	77(3)
C7	2625(6)	3073(8)	-729(5)	83(4)
C8	2715(4)	2205(7)	-181(4)	70(3)
C9	3367(4)	2378(5)	573(3)	57(2)
C10	5069(3)	4258(4)	1889(3)	48(2)
C11	4808(4)	5324(5)	2055(3)	54(2)
C12	3866(4)	5723(5)	1936(3)	57(2)
C13	6032(3)	3930(4)	2088(3)	51(2)
C14	6680(4)	4490(6)	2713(4)	65(3)
C15	7567(5)	4197(8)	2871(5)	83(3)
C16	7846(5)	3346(7)	2429(5)	89(4)
C17	7224(5)	2785(7)	1818(5)	85(3)
C18	6332(5)	3059(6)	1659(4)	66(3)
C19	3684(3)	6732(4)	2420(3)	49(2)
C20	2875(4)	7324(6)	2166(4)	62(3)
C21	2687(5)	8239(6)	2611(5)	74(3)
C22	3280(5)	8579(6)	3325(4)	76(3)
C23	4070(5)	7970(7)	3572(4)	82(3)
C24	4287(5)	7086(6)	3130(4)	70(3)
C25	4745(3)	1719(5)	2600(3)	52(2)
C26	5159(5)	644(5)	2642(4)	70(3)
C27	5577(5)	139(6)	3388(4)	85(3)
C28	5582(5)	710(7)	4095(4)	80(3)
C29	5181(5)	1789(7)	4047(4)	87(3)
C30	4771(4)	2317(6)	3316(4)	68(3)
C31	3165(6)	598(7)	1339(6)	78(4)

FIG. 2 Molecular structure of heterocyclic cation *III*

FIG. 3 Crystal packing of heterocyclic base *I*

FIG. 4 Crystal packing of heterocyclic salt III

Calculations

The geometries and energies of the molecule I and protonated cations VIIIa - VIIIc were calculated and optimized by the standard PM3 method¹⁴.

RESULTS AND DISCUSSION

Crystal and Molecular Structure of Compounds I and III

The X-ray structures of enone *I* and periodide *III* are shown in Figs 1 and 2. In agreement with the X-ray data of other imidazo[1,2-*a*]pyridine derivatives^{7,9,12,15,16}, the heterocyclic systems in *I* and *III* are practically planar and the methyl group in *III* is really at the N1 position. The side chain linkage C=C-CO-Ph adopts, however, different space orientations in the free enone *I* and its quaternary salt *III* as indicated by corresponding C2-C3-C10-C11 dihedral angles, e.g. +55.3 and -118.0°, respectively. The molecular shape of enone *I* resembles to a great extent that of earlier reported² aza analogue *II* with the dihedral angle 52.2°. The solid state conformer of salt *III* may be stabilized by an attraction between the carbonyl oxygen O1 and the positively charged heterocyclic system as supported by a significantly shorter distance between the heteroatoms O1 and N4 in periodide *III* cation (2.75 Å) compared with that in free base *I* (5.16 Å). This type of intramolecular interaction has been also associated with possible curariform activities⁹. The usually observed¹² double bond alternation within the linkage C5-C6-C7-C8-C9 in various imidazo[1,2-*a*]pyridines is conserved also in compounds *I* and *III* as follows from bond lengths given in Table IV.

Solution Structure of Salts III – VII

The NMR spectra of compounds I and III - VII are of interest showing to which degree the effects of protonation and quaternization of the parent enone I may be reflected in the corresponding spectral characteristics. In addition, they provide an information about the N1 regioselectivity in the transformation of base I to its salts of expected structures III - VII.

Complete assignments of ¹H and ¹³C NMR spectra of enone *I* and salts *III* – *VII* based on standard 1D and 2D techniques (HOM2DJ, COSY, LR-COSY, HETCOR, LR-HETCOR, APT, coupled C, DEPTGL) are given in Tables V and VI. The proton chemical shifts H-6, H-7 and H-8 of base *I* are similar to those of the parent heterocycle¹⁷ except of the signal of H-5 which is upfield shifted (0.76 pmm) apparently due to anisotropic effects of the side chain at the position 3. The positive charge of cations in quaternary salts *III* – *VI* results not only in deshielding effects at heterocyclic atoms H-5, H-6, H-7, H-8, C-2 and C-3 but also at side chain signals of H-11, C-10 and C-11, thus indicating mutual space vicinities of the molecular counterparts. The NMR patterns of perchlorate *VII* are close to those of quaternary salts *III* – *VI* in agreement with

the expected N1-protonation of base *I* which has been further supported by comparison of the PM3 calculated molecular energies. These have shown the cation *VIIIa* being stabilized by 230.9 and 109.1 kJ mol⁻¹ with respect to alternatives *VIIIb* and *VIIIc*,

TABLE IV

Comparison of some calculated and observed bond lengths (Å) and bond angles (°) for compounds I and III

Dond	Bas	e I	Periodide III		
Bolid	X-ray	PM3	X-ray	PM3 ^a	
N1-C2	1.368(6)	1.386	1.388(6)	1.414	
C2-C3	1.375(6)	1.407	1.351(8)	1.392	
C3-N4	1.386(6)	1.406	1.405(6)	1.414	
N4-C5	1.368(6)	1.397	1.373(8)	1.395	
C5-C6	1.338(7)	1.367	1.357(8)	1.373	
C6-C7	1.410(8)	1.425	1.385(12)	1.421	
C7–C8	1.357(8)	1.366	1.342(12)	1.371	
C8–C9	1.397(7)	1.422	1.418(8)	1.417	
C9-N1	1.330(6)	1.367	1.340(6)	1.397	
C9-N4	1.380(6)	1.414	1.351(7)	1.401	
C3-C10	1.468(6)	1.459	1.478(7)	1.464	
C10-C11	1.335(6)	1.340	1.333(8)	1.341	
C11-C12	1.488(7)	1.488	1.484(9)	1.489	
C12-O1	1.219(6)	1.215	1.226(6)	1.220	
C9-N1-C2	105.4(4)	106.1	108.4(4)	109.1	
N1-C2-C3	111.3(5)	110.7	108.2(4)	107.3	
C2-C3-C10	133.6(5)	131.1	129.5(5)	128.9	
C3-C10-C11	120.9(5)	122.8	122.9(5)	122.9	
C11-C12-O1	117.5(5)	122.1	121.2(5)	121.1	

^a The calculation was performed for the counter-cation only.

2686

respectively. It may be additionally noted that the magnetic equivalence observed for *ortho*, *meta* and *para* counter-protons in all studied compounds reflect unrestricted rotations of phenyl residue in the positions 2, 10 and 12 under conditions of the measurement.

PM3 Calculations of Compounds I and III

The PM3 optimization of molecule *I* and cation *III* gave satisfying bond lengths (Table IV) in main cases and let to molecular shapes similar to those found by the X-ray analysis. Surprisingly, the fit for the cation *III* was found to be even better (Fig. 5) than that for

Fig. 5

Comparison of X-ray and PM3 calculated molecular shapes for cation *III*. Dashed parts follow from the theoretical treatment

Fig. 6

Comparison of X-ray and PM3 calculated molecular shapes for heterocyclic base *I*. Dashed parts follow from the theoretical treatment

2688

the parent base I where the subspace around the benzoyl group is apparently more affected by crystal field effects (Fig. 6). In both cases, however, a different space configuration of the side linkage is correctly interpreted by the semiempirical PM3 method thus independently showing that the species I and *III* are chiral at least in the solid state¹⁸.

Compound Proton V^{d} III^{b} I^{a} IV^c VI^{e} Π VII 8.454 H5 7.850 8.378 8.455 8.454 8.485 8.584 7.540 7.545 7.560 7.592 7.44 H6 6.854 7.036 H7 7.305 8.660 8.161 8.167 8.181 8.170 8.040 8.442 H8 7.636 8.428 8.524 8.407 8.083 _ 8.082 8.22 H11 7.978 8.234 8.192 8.24 8.346 o-Ph2 7.32 7.343 7.287 7.142 7.44 7.685 7.714 7.32 7.40 m-Ph2 7.234 7.249 7.231 7.335 7.252 7.155 7.36 7.373 7.398 7.356 7.32 p-Ph2 7.180 7.548 7.703 7.742 7.772 o-Ph10 7.507 7.734 7.731 *m*-Ph10 7.372 7.357 7.41 7.395 7.404 7.39 7.4047.438 p-Ph10 7.413 7.410 7.46 7.464 7.447 7.42 o-Ph12 7.826 7.918 7.888 7.896 7.913 7.954 7.957 *m*-Ph12 7.372 7.428 7.48 7.475 7.472 7.491 7.43 p-Ph12 7.552 7.64 7.633 7.60 7.507 7.634 7.656

TABLE V						
¹ H NMR spectral	data (δ.	ppm) of	studied	compounds	in	$(CD_3)_2SO$

^{*a*} Typical coupling constants in Hz: J(5,6) = 6.9, J(5,7) = 1.0, J(5,8) = 1.2, J(6,7) = 6.9, J(6,8) = 1.2and J(7,8) = 9.0, J(o,m) = 7.2, J(m,p) = 7.4 and J(o,p) = 1.4 for Ph2, J(o,m) = J(m,p) = 6.3 and J(o,p) = 1.4 for Ph10 and J(o,m) = J(m,p) = 7.2 and J(o,p) = 1.4 for Ph12; ^{*b*} 3.949 s, 3 H (CH₃); ^{*c*} 3.950 s, 3 H (CH₃); ^{*d*} 1.296 dd, 3 H, J = 7.3 and 7.3 (CH₃); 4.408 dq, 1 H and 4.456 dq, 1 H J = 14.8 and 7.3 (CH₂); ^{*e*} 5.602 d, 1 H and 5.868 d, 1 H (CH₃); 6.976 d, 2 H (o-Ph) and 7.32 m, 3 H (m,p-Ph).

TABLE VI

 ^{13}C NMR spectral data (\delta, ppm) of studied compounds in $(CD_3)_2SO$

Calar	Compound						
Carbon –	Ι	II	III^{a}	IV^b	V^c	VI^d	VII
C2	117.81	116.51	120.91	120.89	134.54	121.80	119.64
C3	143.01	143.95	135.26	135.53	121.29	134.49	133.24
C5	124.91	133.35	127.28	127.22	127.52	127.73	126.96
C6	112.59	109.90	117.95	117.92	118.03	118.43	117.70
C7	125.39	150.39	133.97	133.92	134.18	134.91	133.88
C8	116.76	_	111.87	111.93	111.78	111.79	112.54
C9	144.69	147.88	139.46	139.48	138.76	139.56	139.92
C10	141.06	140.36	135.96	136.00	135.98	135.91	136.93
C11	128.19	127.88	130.55	130.39	130.36	130.38	130.32
C12	189.82	189.40	189.44	189.94	189.54	189.47	189.50
i-Ph2	133.66	133.10	124.29	124.34	124.37	124.16	126.26
o-Ph2	127.09	127.35	128.89	128.84	129.53	129.47	127.42
m-Ph2	128.24	128.30	129.73	129.73	128.96	128.85	129.31
p-Ph2	127.53	128.01	130.55	130.53	130.63	130.69	131.16
<i>i</i> -Ph10	137.36 ^e	137.22	136.80	136.83	135.51	136.95	136.58 ^e
o-Ph10	127.59	127.79	127.80	127.85	127.85	127.78	127.89
<i>m</i> -Ph10	128.41	129.03	129.08	129.05	129.01	129.06	128.73
<i>p</i> -Ph10	130.39	130.41	130.99	130.96	130.94	131.02	130.41
<i>i</i> -Ph12	137.61 ^e	137.61	135.56	135.50	136.93	135.40	137.07 ^e
o-Ph12	127.97	128.14	128.43	128.43	128.41	128.49	128.42
<i>m</i> -Ph12	129.13	128.52	128.68	128.67	128.63	128.74	129.24
<i>p</i> -Ph12	132.83	133.03	133.64	133.62	133.56	133.71	133.60

^{*a*} 32.42 (CH₃); ^{*b*} 32.44 (CH₃); ^{*c*} 14.58 (CH₃) and 40.46 (CH₂); ^{*d*} 47.88 (CH₂), 121.80 (*i*-Ph), 126.07 (*o*-Ph), 128.05 (*m*-Ph) and 128.83 (*p*-Ph); ^{*e*} interchangeable assignments.

2690

The research work was supported by the grant No. 203/93/0320 of the Grant Agency of the Czech Republic. The authors are indebted to the staff of Central Laboratories at Prague Institute of Chemical Technology for IR spectral measurement and elemental analyses.

REFERENCES

- 1. Nesvadba P., Strop P., Kuthan J.: Collect. Czech. Chem. Commun. 48, 3307 (1983).
- Bohm S., Kubik R., Novotny J., Ondracek J., Kratochvil B., Kuthan J.: Collect. Czech. Chem. Commun. 56, 2326 (1991).
- Grassy G., Teulade J. C., Chapat J. P., De Buochberg M. S., Attisso M.: Eur. J. Med. Chem. 17, 109 (1982).
- Kaminski J. J., Bristol J. A., Puchalski C., Lovey R. G., Elliott A. J., Guzik H., Solomon D. M., Conn D. J., Domalski M. S., Wong S.-C., Gold E. M., Long J. F., Chiu P. J. S., Steinberg M., McPhail A. T.: J. Med. Chem. 28, 876 (1985).
- Abignente E., Arena F., Luraschi E., Saturnino C., Rossi F., Lampa E., Cazzola M., Brandinelli E., Marrazzo R., Marmo E.: Rend. Atti Accad. Sci. Med. Chir. 139, 313 (1985); Chem. Abstr. 105, 126822 (1986).
- 6. Abignente E.: Actual. Chim. Ther. 18, 193 (1991); Chem. Abstr. 115, 256028 (1991).
- 7. Pointer D. J., Wilford J. B.: J. Chem. Soc., Perkin. Trans. 2 1972, 2259.
- Bellani P., Clavenna G., Sosio A.: Farmaco, Ed. Sci. 39, 846 (1984); Chem. Abstr. 102, 17138 (1985).
- 9. Pointer D. J., Wilford J. B., Hursthouse M. B., Walker N. P. C.: J. Chem. Soc., Perkin. Trans. 2 1986, 443.
- Montgomery J. A., Secrist III J. A. in: *Comprehensive Heterocyclic Chemistry* (K. T. Potts, Ed.), Vol. 5, Part 4A, p. 607. Pergamon Press, Oxford 1984.
- 11. Paudler W. W., Blewitt H. L.: J. Org. Chem. 31, 1295 (1966).
- 12. Teulade J. C., Escale R., Rossi J. C., Chapat J. P., Grassy G., Payard M.: Aust. J. Chem. 35, 1761 (1982).
- 13. North A. C. T., Phillips D. C., Mathews F. S.: Acta Crystallogr. A 24, 351 (1968).
- 14. Stewart J. J. P.: Comput. Chem. 10, 209, 221 (1989).
- 15. Alcock N. W., Golding B. T., Hall D. R., Horn U.: J. Am. Chem. Soc. 94, 8610 (1972).
- Aslanov L. A., Tafeenko V. A., Paseshnichenko K. A., Bundel Yu. G., Gromov S. P., Gerasimov B. G.: Zh. Strukt. Khim. 24, 115 (1983).
- 17. Pugmire R. J., Robins M. J., Grant D. M., Robins R. K.: J. Am. Chem. Soc. 93, 1887 (1971).
- 18. Kuthan J.: Heterocycles 37, 1347 (1994).
- 19. International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham 1974.
- 20. Watkin D. J.: CRYSTALS. Crystallographic Package. University of Oxford, Oxford 1989.
- 21. Frenz B. A. and Associates, Inc.: SDP. Structure Determination Package. Enraf-Nonius, Delft 1985.
- 22. Sheldrick G. M.: SHELXS86. Program for Crystal Structure Solution. University of Gottingen, Gottingen 1986.
- Nardelli M.: PARST91. A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis. University of Parma, Parma 1991.
- 24. Sheldrick G. M.: SHELX76. Program for Crystal Structure Determination. University of Cambridge, Cambridge 1976.

Translated by the author (J. K.).